Sep 28, 2022
Schaun Wheeler

“How do I know it works?” A (somewhat) technical explanation of Aampe’s learning systems

Sep 28, 2022
Schaun Wheeler

“How do I know it works?” A (somewhat) technical explanation of Aampe’s learning systems

Sep 28, 2022
Schaun Wheeler

“How do I know it works?” A (somewhat) technical explanation of Aampe’s learning systems

Sep 28, 2022
Schaun Wheeler

“How do I know it works?” A (somewhat) technical explanation of Aampe’s learning systems

A while ago, we released A User Story, an explanation of our Aampe’s algorithms, told in the form of a storybook. We wrote A User Story because we wanted anyone, from any background, to be able to understand our systems well enough to comprehend why they work.

Now we’re releasing “How do I know it works?”. This is a much more technical version of A User Story. It’s more detailed than a white paper but, we hope, much more accessible than an academic paper. The purpose of this document is to delve into the weeds of how our systems learn.

The concept of lift lies at the core of our systems. Lift is a measure of return on investment, and there’s no such thing as ROI without attribution - this paper explains why and in what cases we feel confident attributing user behavior to the notifications we manage. We show not only how we calculate lift in a way that doesn’t rely on naïve comparison groups, but also show how we can use that lift metric to assess the different parts of our system to understand what works well, and what still has room for improvement. More than that, we explain why our system can be trusted to automate decisions of when, to whom, and about what to send notifications.

0

Related

Shaping the future of marketing with Aampe through innovation, data.

Renewals, holidays, and launches don’t need hardcoded rules. With reward signals, eligibility criteria, and timing action sets, agents adapt naturally to recurring patterns.

Renewals, holidays, and launches don’t need hardcoded rules. With reward signals, eligibility criteria, and timing action sets, agents adapt naturally to recurring patterns.

Renewals, holidays, and launches don’t need hardcoded rules. With reward signals, eligibility criteria, and timing action sets, agents adapt naturally to recurring patterns.

Renewals, holidays, and launches don’t need hardcoded rules. With reward signals, eligibility criteria, and timing action sets, agents adapt naturally to recurring patterns.

Aug 21, 2025

Schaun Wheeler

By modeling statistical relationships between events, agents evaluate directional shifts in behavior—so the same system adapts across every lifecycle stage.

Aug 21, 2025

Schaun Wheeler

By modeling statistical relationships between events, agents evaluate directional shifts in behavior—so the same system adapts across every lifecycle stage.

Aug 21, 2025

Schaun Wheeler

By modeling statistical relationships between events, agents evaluate directional shifts in behavior—so the same system adapts across every lifecycle stage.

Aug 21, 2025

Schaun Wheeler

By modeling statistical relationships between events, agents evaluate directional shifts in behavior—so the same system adapts across every lifecycle stage.

Aug 19, 2025

Schaun Wheeler

You don’t coach by chasing the trophy. You coach by tracking whether each play puts you in a stronger position. The same is true for customer engagement.

Aug 19, 2025

Schaun Wheeler

You don’t coach by chasing the trophy. You coach by tracking whether each play puts you in a stronger position. The same is true for customer engagement.

Aug 19, 2025

Schaun Wheeler

You don’t coach by chasing the trophy. You coach by tracking whether each play puts you in a stronger position. The same is true for customer engagement.

Aug 19, 2025

Schaun Wheeler

You don’t coach by chasing the trophy. You coach by tracking whether each play puts you in a stronger position. The same is true for customer engagement.

Jul 23, 2025

Schaun Wheeler

A/B tests help us see what works on average, but real users aren’t average, their motivations and contexts vary. That’s where agentic learning shines, adapting to individuals over time. The best results come when we layer the two: tests for clarity, agents for personalization.

Jul 23, 2025

Schaun Wheeler

A/B tests help us see what works on average, but real users aren’t average, their motivations and contexts vary. That’s where agentic learning shines, adapting to individuals over time. The best results come when we layer the two: tests for clarity, agents for personalization.

Jul 23, 2025

Schaun Wheeler

A/B tests help us see what works on average, but real users aren’t average, their motivations and contexts vary. That’s where agentic learning shines, adapting to individuals over time. The best results come when we layer the two: tests for clarity, agents for personalization.

Jul 23, 2025

Schaun Wheeler

A/B tests help us see what works on average, but real users aren’t average, their motivations and contexts vary. That’s where agentic learning shines, adapting to individuals over time. The best results come when we layer the two: tests for clarity, agents for personalization.

Load More

Load More

Load More

Load More