Sep 28, 2022
Schaun Wheeler

“How do I know it works?” A (somewhat) technical explanation of Aampe’s learning systems

Sep 28, 2022
Schaun Wheeler

“How do I know it works?” A (somewhat) technical explanation of Aampe’s learning systems

Sep 28, 2022
Schaun Wheeler

“How do I know it works?” A (somewhat) technical explanation of Aampe’s learning systems

Sep 28, 2022
Schaun Wheeler

“How do I know it works?” A (somewhat) technical explanation of Aampe’s learning systems

A while ago, we released A User Story, an explanation of our Aampe’s algorithms, told in the form of a storybook. We wrote A User Story because we wanted anyone, from any background, to be able to understand our systems well enough to comprehend why they work.

Now we’re releasing “How do I know it works?”. This is a much more technical version of A User Story. It’s more detailed than a white paper but, we hope, much more accessible than an academic paper. The purpose of this document is to delve into the weeds of how our systems learn.

The concept of lift lies at the core of our systems. Lift is a measure of return on investment, and there’s no such thing as ROI without attribution - this paper explains why and in what cases we feel confident attributing user behavior to the notifications we manage. We show not only how we calculate lift in a way that doesn’t rely on naïve comparison groups, but also show how we can use that lift metric to assess the different parts of our system to understand what works well, and what still has room for improvement. More than that, we explain why our system can be trusted to automate decisions of when, to whom, and about what to send notifications.

0

Related

Shaping the future of marketing with Aampe through innovation, data.

May 29, 2025

Schaun Wheeler

Discover how Aampe's semantic-associative agents adapt to varying user contexts, from fully known to unknown users, ensuring personalized experiences through continuous learning and contextual imputation.

May 29, 2025

Schaun Wheeler

Discover how Aampe's semantic-associative agents adapt to varying user contexts, from fully known to unknown users, ensuring personalized experiences through continuous learning and contextual imputation.

May 29, 2025

Schaun Wheeler

Discover how Aampe's semantic-associative agents adapt to varying user contexts, from fully known to unknown users, ensuring personalized experiences through continuous learning and contextual imputation.

May 29, 2025

Schaun Wheeler

Discover how Aampe's semantic-associative agents adapt to varying user contexts, from fully known to unknown users, ensuring personalized experiences through continuous learning and contextual imputation.

May 28, 2025

Schaun Wheeler

Explore how Aampe's semantic-associative agents differ from traditional multi-armed bandit models. Learn about their multi-dimensional action space and non-ergodic learning approach that tailors user experiences without generalization.

May 28, 2025

Schaun Wheeler

Explore how Aampe's semantic-associative agents differ from traditional multi-armed bandit models. Learn about their multi-dimensional action space and non-ergodic learning approach that tailors user experiences without generalization.

May 28, 2025

Schaun Wheeler

Explore how Aampe's semantic-associative agents differ from traditional multi-armed bandit models. Learn about their multi-dimensional action space and non-ergodic learning approach that tailors user experiences without generalization.

May 28, 2025

Schaun Wheeler

Explore how Aampe's semantic-associative agents differ from traditional multi-armed bandit models. Learn about their multi-dimensional action space and non-ergodic learning approach that tailors user experiences without generalization.

May 26, 2025

Schaun Wheeler

Traditional customer engagement tools often constrain strategies by bundling orchestration and analysis within fixed campaign structures. Adopting an agentic approach—separating orchestration from analysis—enables more dynamic, user-centered communication, allowing for nuanced decision-making and broader impact.

May 26, 2025

Schaun Wheeler

Traditional customer engagement tools often constrain strategies by bundling orchestration and analysis within fixed campaign structures. Adopting an agentic approach—separating orchestration from analysis—enables more dynamic, user-centered communication, allowing for nuanced decision-making and broader impact.

May 26, 2025

Schaun Wheeler

Traditional customer engagement tools often constrain strategies by bundling orchestration and analysis within fixed campaign structures. Adopting an agentic approach—separating orchestration from analysis—enables more dynamic, user-centered communication, allowing for nuanced decision-making and broader impact.

May 26, 2025

Schaun Wheeler

Traditional customer engagement tools often constrain strategies by bundling orchestration and analysis within fixed campaign structures. Adopting an agentic approach—separating orchestration from analysis—enables more dynamic, user-centered communication, allowing for nuanced decision-making and broader impact.

May 22, 2025

Schaun Wheeler

Agentic systems are designed to operate within a manageable state space, focusing on relevant variables to make effective decisions. This approach contrasts with traditional AI models that attempt to process vast amounts of data, often leading to inefficiencies and suboptimal performance.

May 22, 2025

Schaun Wheeler

Agentic systems are designed to operate within a manageable state space, focusing on relevant variables to make effective decisions. This approach contrasts with traditional AI models that attempt to process vast amounts of data, often leading to inefficiencies and suboptimal performance.

May 22, 2025

Schaun Wheeler

Agentic systems are designed to operate within a manageable state space, focusing on relevant variables to make effective decisions. This approach contrasts with traditional AI models that attempt to process vast amounts of data, often leading to inefficiencies and suboptimal performance.

May 22, 2025

Schaun Wheeler

Agentic systems are designed to operate within a manageable state space, focusing on relevant variables to make effective decisions. This approach contrasts with traditional AI models that attempt to process vast amounts of data, often leading to inefficiencies and suboptimal performance.

Load More

Load More

Load More

Load More